40 research outputs found

    Agronomic Traits in Tall Fescue Populations under Irrigated and Rain-Fed Conditions

    Get PDF
    Grasslands and native rangelands are the predominant land-use all over the world. Tall fescue [Schedonorus arundinaceus (Schreb.) Dumort] is a cool-season perennial grass widely grown throughout the temperate regions of the world and an important component of the grasslands. Drought can have serious consequences on performance of agriculture, soil and plant health, and economics. Developing drought tolerant plants that can maintain productivity during drought, will have great environmental and economic benefits to farmers. A tall fescue population was developed by crossing a drought tolerant genotype to a susceptible genotype. The population was evaluated for different morphological and yield traits under irrigated and rain-fed conditions at the University of Wyoming, USA. Large variations among the 252 tall fescue genotypes for several traits of interest have been observed. Plants under irrigated conditions were about 1.5 times more vigorous and 1.9 times taller than those grown in rain-fed conditions. Rain-fed conditions greatly reduced the tillering ability (\u3c 2.6 fold) of tall fescue plants. Plants under irrigated conditions were 2.9 times more productive than those grown in rain-fed condition. The largest difference in a year for water content (WC) between the plants grown in the two conditions was 8.06%. Genotypes with better tolerance to drought have been identified in the population which could be useful to develop drought tolerant tall fescue cultivars

    Dig Up Tall Fescue Plastid Genomes For The Identification of Morphotype-Specific DNA Variants

    Get PDF
    Background Tall fescue (Festuca arundinacea Schreb.) is an important cool-season perennial grass species. Hexaploid tall fescue has three distinct morphotypes used either as forage or turf purposes. Its chloroplast genome is conserved due to it being maternally inherited to the next generation progenies. To identify morphotype-specific DNA markers and the genetic variations, plastid genomes of all three tall fescue morphotypes, i.e., Continental cv. Texoma MaxQ II, Rhizomatous cv. Torpedo, and Mediterranean cv. Resolute, have been sequenced using Illumina MiSeq sequencing platform. Results The plastid genomes of Continental-, Rhizomatous-, and Mediterranean tall fescue were assembled into circular master molecules of 135,283 bp, 135,336 bp, and 135,324 bp, respectively. The tall fescue plastid genome of all morphotypes contained 77 protein-coding, 20 tRNAs, four rRNAs, two pseudo protein-coding, and three hypothetical protein-coding genes. We identified 630 SNPs and 124 InDels between Continental and Mediterranean, 62 SNPs and 20 InDels between Continental and Rhizomatous, and 635 SNPs and 123 InDels between Rhizomatous and Mediterranean tall fescue. Only four InDels in four genes (ccsA, rps18, accD, and ndhH-p) were identified, which discriminated Continental and Rhizomatous plastid genomes from the Mediterranean plastid genome. Here, we identified and reported eight InDel markers (NRITCHL18, NRITCHL35, NRITCHL43, NRITCHL65, NRITCHL72, NRITCHL101, NRITCHL104, and NRITCHL110) from the intergenic regions that can successfully discriminate tall fescue morphotypes. Divergence time estimation revealed that Mediterranean tall fescue evolved approximately 7.09 Mya, whereas the divergence between Continental- and Rhizomatous tall fescue occurred about 0.6 Mya. Conclusions To our knowledge, this is the first report of the assembled plastid genomes of Rhizomatous and Mediterranean tall fescue. Our results will help to identify tall fescue morphotypes at the time of pre-breeding and will contribute to the development of lawn and forage types of commercial varieties

    Tall Fescue Expressed Sequence Tag and Simple Sequence Repeats: Important Resources for Grass Species

    Get PDF
    Expressed sequence tag (EST) databases have been growing exponentially. The simple sequence repeat (SSR) has become one of the most useful molecular marker systems in plant breeding and is widely used in cultivar fingerprinting, genetic diversity assessment, molecular mapping and marker-assisted selection. ESTs are a potential source for SSRs. The EST-SSR markers are of high quality and have versatile applications in molecular breeding (Bughrara et al., 2003; Saha et al., 2004 a, b, c). Here, we present an overview of our efforts to develop SSRs from tall fescue ESTs and their application for the genetic improvement of forage and turf grass species

    Isolation of intact chloroplast for sequencing plastid genomes of five festuca species

    Get PDF
    Isolation of good quality chloroplast DNA (cpDNA) is a challenge in different plant species, although several methods for isolation are known. Attempts were undertaken to isolate cpDNA from Festuca grass species by using available standard protocols; however, they failed due to difficulties separating intact chloroplasts from the polysaccharides, oleoresin, and contaminated nuclear DNA that are present in the crude homogenate. In this study, we present a quick and inexpensive protocol for isolating intact chloroplasts from seven grass varieties/accessions of five Festuca species using a single layer of 30% Percoll solution. This protocol was successful in isolating high quality cpDNA with the least amount of contamination of other DNA. We performed Illumina MiSeq paired-end sequencing (2 × 300 bp) using 200 ng of cpDNA of each variety/accession. Chloroplast genome mapping showed that 0.28%–11.37% were chloroplast reads, which covered 94%–96% of the reference plastid genomes of the closely related grass species. This improved method delivered high quality cpDNA from seven grass varieties/accessions of five Festuca species and could be useful for other grass species with similar genome complexity

    Additive Manufacturing of Ceramic Materials: a Performance Comparison of Catalysts for Monopropellant Thrusters

    Get PDF
    Switchgrass ( L.) is a promising herbaceous energy crop, but further gains in biomass yield and quality must be achieved to enable a viable bioenergy industry. Developing DNA markers can contribute to such progress, but depiction of genetic bases should be reliable, involving simple additive marker effects and also interactions with genetic backgrounds (e.g., ecotypes) or synergies with other markers. We analyzed plant height, C content, N content, and mineral concentration in a diverse panel consisting of 512 genotypes of upland and lowland ecotypes. We performed association analyses based on exome capture sequencing and tested 439,170 markers for marginal effects, 83,290 markers for marker × ecotype interactions, and up to 311,445 marker pairs for pairwise interactions. Analyses of pairwise interactions focused on subsets of marker pairs preselected on the basis of marginal marker effects, gene ontology annotation, and pairwise marker associations. Our tests identified 12 significant effects. Homology and gene expression information corroborated seven effects and indicated plausible causal pathways: flowering time and lignin synthesis for plant height; plant growth and senescence for C content and mineral concentration. Four pairwise interactions were detected, including three interactions preselected on the basis of pairwise marker correlations. Furthermore, a marker × ecotype interaction and a pairwise interaction were confirmed in an independent switchgrass panel. Our analyses identified reliable candidate variants for important bioenergy traits. Moreover, they exemplified the importance of interactive effects for depicting genetic bases and illustrated the usefulness of preselecting marker pairs for identifying pairwise marker interactions in association studies

    An Efficient Brome mosaic virus-Based Gene Silencing Protocol for Hexaploid Wheat (Triticum aestivum L.)

    Get PDF
    Virus-induced gene silencing (VIGS) is a rapid and powerful method to evaluate gene function, especially for species like hexaploid wheat that have large, redundant genomes and are difficult and time-consuming to transform. The Brome mosaic virus (BMV)-based VIGS vector is widely used in monocotyledonous species but not wheat. Here we report the establishment of a simple and effective VIGS procedure in bread wheat using BMVCP5, the most recently improved BMV silencing vector, and wheat genes PHYTOENE DESATURASE (TaPDS) and PHOSPHATE2 (TaPHO2) as targets. Time-course experiments revealed that smaller inserts (~100 nucleotides, nt) were more stable in BMVCP5 and conferred higher silencing efficiency and longer silencing duration, compared with larger inserts. When using a 100-nt insert and a novel coleoptile inoculation method, BMVCP5 induced extensive silencing of TaPDS transcript and a visible bleaching phenotype in the 2nd to 5th systemically-infected leaves from nine to at least 28 days post inoculation (dpi). For TaPHO2, the ability of BMVCP5 to simultaneously silence all three homoeologs was demonstrated. To investigate the feasibility of BMV VIGS in wheat roots, ectopically expressed enhanced GREEN FLUORESCENT PROTEIN (eGFP) in a transgenic wheat line was targeted for silencing. Silencing of eGFP fluorescence was observed in both the maturation and elongation zones of roots. BMVCP5 mediated significant silencing of eGFP and TaPHO2 mRNA expression in roots at 14 and 21 dpi, and TaPHO2 silencing led to the doubling of inorganic phosphate concentration in the 2nd through 4th systemic leaves. All 54 wheat cultivars screened were susceptible to BMV infection. BMVCP5-mediated TaPDS silencing resulted in the expected bleaching phenotype in all eight cultivars examined, and decreased TaPDS transcript was detected in all three cultivars examined. This BMVCP5 VIGS technology may serve as a rapid and effective functional genomics tool for high-throughput gene function studies in aerial and root tissues and in many wheat cultivars
    corecore